MS解析における各種前処理の自動化

直接イオン化の最新技術 DART ID-CUBE(New!!)

2011年**9**月**30**日 エーエムアール株式会社 板東泰彦

AMR, Inc.

- Head Office: Tokyo Meguro
- Employee: 20
- Incorporated in 1986

Application Lab

Solution for LC/MS and GC/MS

- Phamacetical analysis
- Environmental analysis
- Proteomics

Polymer Analysis

GC/MS用オートサンプラー

LC用オートサンプラー

COMBI PAL はさまざまなGCに装着可能

Agilent 5890 / 6890 / 6850 / 7890
Thermo Trace 2000 / FOCUS / CE 8000top
Shimadzu 14 / 17 / 2010 / 2014
Varian GC 3400 / 3600 / 3800 / 3900
Perkin Elmer Autosystem XL / Clarus 500 / 600

CombiPALの多機能性

シリンジュニットを交換するだけでさまざまなインジェクションが可能

液体インジェクション

ヘッドスペース分析

SPME(固相マイクロ抽出)

ITEX(超高感度ヘッドスペース)

基本システムから目的に合わせてアップグレード可能

Upgrade option Liquid → Headspace → SPME → ITEX

- 1. 液体インジェクションシステムの導入
- 2. ヘッドスペースオプションの追加
- 3. SPME/ITEXオプションの追加

Liquid Syringe

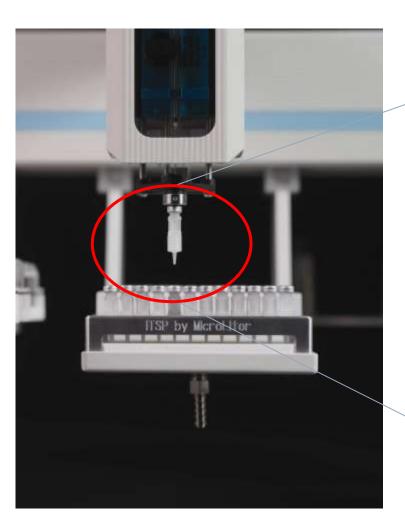
HS Option

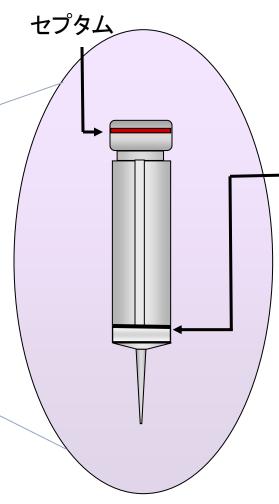
SPME Option


ITEX Option

GC 液体インジェクション

- 液体インジェクションユニットを簡単に装着可能
- 幅広い注入容量: 100nl 500μl
- 注入スピード: 0.01µl/s 250µl/s
- 各注入は独自にコントロール可能
- 大量注入にも対応 (LVI)
- 分注、希釈など溶液トランスファーが可能
- オンラインでの誘導体化試薬の添加
- すべての注入モードに対応 (SSL, PTV, On Column)
- バイアル内液/液抽出サンプルの注入も可能 (Liquid – Liquid Extraction in Vial)




Instrument Top Sample Prep(ITSP)オプション

各種固相抽出レジンが充填されたPAL専用のカートリッジ

逆相レジン

C18 Varian SPEC 6mg

C18 Orochem 10mg

C18AR Varian End-cap

C8 Varian SPEC 6mg

C8 Orochem 10mg

Phenyl, Varian SPEC

Phenyl, Orochem

極性レジン

Silica Varian SPEC

Silica Orochem

Cyanopropyl

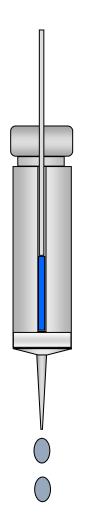
Amino

イオン交換レジン

Strong Anion Exchange

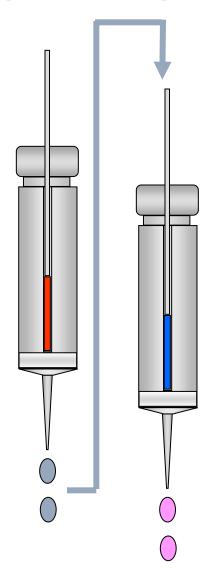
Strong Cation Exchange

Weak Anion


Weak Cation

フィルター

0.45um


溶液のコントロール

オートサンプラーのシリンジがカート リッジ内にタイトに装着されるため各 種溶液は押し出しまたは吸引が自由 に行うことができるためバキュームシ ステム(吸引)を使う必要がない。

異なるSPEによるマルチSPE処理

逆相レジン

C18 Varian SPEC 6mg

C18 Orochem 10mg

C18AR Varian End-cap

C8 Varian SPEC 6mg

C8 Orochem 10mg

Phenyl, Varian SPEC

Phenyl, Orochem

極性レジン

Silica Varian SPEC

Silica Orochem

Cyanopropyl

Amino

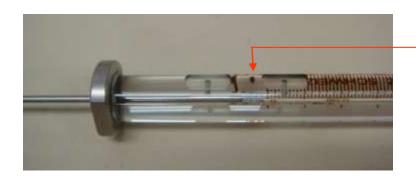
イオン交換レジン

Strong Anion Exchange

Strong Cation Exchange

Weak Anion

Weak Cation

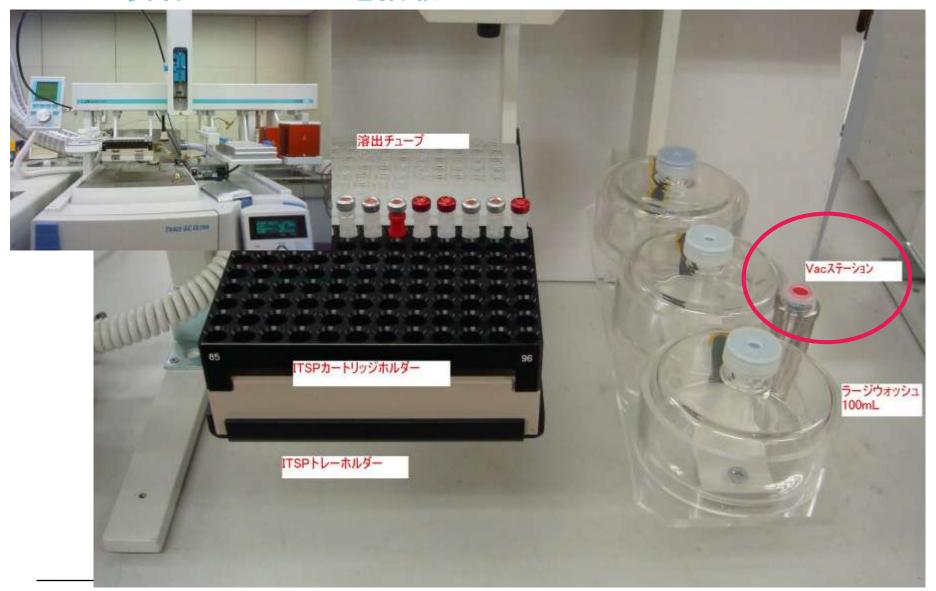

フィルター

0.45um

ガスパージのメカニズム


サイドポート搭載インジェクションシリンジ80ul

ガスパージ用サイドポート


ガスラインがサイドポートシリンジに接続されクリーンなへリウムガス又は窒素ガスがシリンジに供給される

ガスはシリンジニードルの先端から固相抽出カートリッジに供給されカートリッジ中の水分を乾燥させて取り除く

ITSP装着CombiPALを搭載したGC/MS

各機能を用いた前処理の自動化に伴う高感度分析の応用例

固相抽出カートリッジと大量注入を用いた 水中の微量農薬の解析

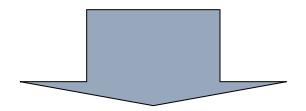
オンラインSPE-GC/MS

サンプル前処理 SPE固相抽出

固相抽出カートリッジ

固相抽出プレート

固相抽出前処理自動化装置



マニュアルでの固相抽出の問題点

- 手間がかかり前処理に時間を要する
- 再現性が得られない
- 分析の精度が得られない

SPE前処理から注入までの自動化

サンプル前処理の流れ

コンディショニング 試料ロード 洗浄

溶出

濃縮

オフラインでのSPE前処理の自動化

問題点

溶出後サンプルから水を抜く手動作業が必要 手動工程があるため稼働率が低い

チャレンジ

SPE固相抽出後のサンプルGC/MSにインジェクション(大量注入)

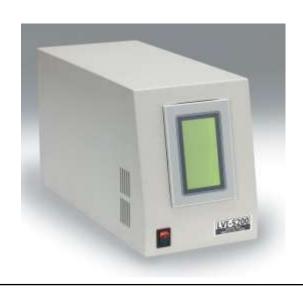
SPE-GC/MSの自動化

CombiPALでのサンプル前処理/GCインジェクションの流れ

- ① カートリッジコンディショニング アセトン/ヘキサン ×1
- ② カートリッジコンディショニング メタノール ×1
- ③ カートリッジ コンディショニング H2O ×1
- **4** Sample Loading 80uL x 25 times (Total 2mL)
- ⑤ シリンジ洗浄 メタノール ×1
- ⑥ シリンジ洗浄 アセトン/ヘキサン ×1
- ⑦ シリンジにてエアーをパージ (80uL Syringe 3 Strokes)
- ⑧ ヘリウムガスパージ 5min
- 9 シリンジ洗浄 アセトン/ヘキサン ×1
- ⑩ 溶出 50uL~ 溶出液をロード
- ① シリンジにてエアーをパージ (80uL Syringe 5 Strokes)
- ① サンプルをGCに注入 20uL~
- ① シリンジ洗浄 メタノール ×2
- (14) シリンジ洗浄 アセトン/ヘキサン ×2

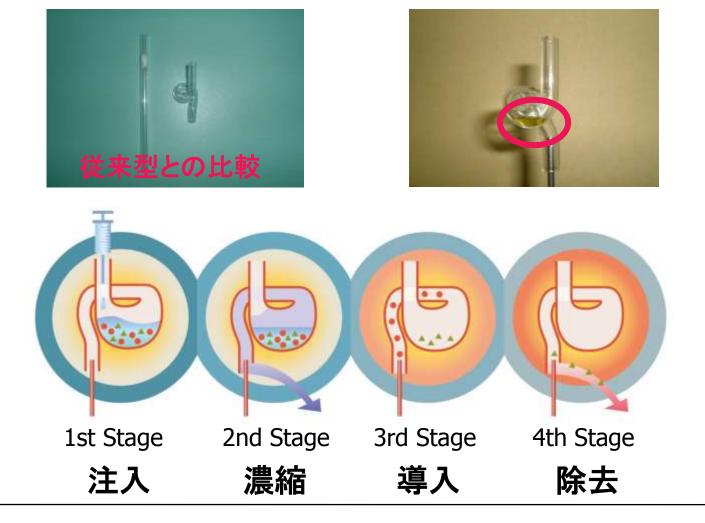
オフラインSPE前処理自動化とオンラインSPE前処理自動化の比較

オフラインSPE前処理自	動化 (300mgSPEレジン)	オンラインSPE前処理自	動化 (12mgSPEレジン)
コンディショニング		コンディショニング	
試料ロード	500ml / 500ng	試料ロード	2ml / 2ng
洗浄		洗浄	
脱水		脱水	
溶出	3ml / 500ng	溶出	50ul / 2ng
濃縮	$3ml \rightarrow 1ml / 500ng$	濃縮	<u>必要なし</u>
水の除去1:シリンジで吸い 内部標準添加	取り マニュアル操作	水の除去1:シリンジに吸い取 内部標準添加	<u>必要なし</u>
水の除去2:吸水剤添加(硫	酸ナトリウム) オフライン	水の除去2:吸水剤添加(硫酸	ナトリウム) <u>必要なし</u>
GC インジェクション	2ul / 1ng	GC インジェクション	20ul / 0.8ng


大量注入の利点

- 高感度分析が可能
 - ・感度向上(10倍から100倍の感度向上が期待できる)
 - SCAN分析(一斉分析、データ信頼性の向上)
- 前処理操作の迅速化および簡易化
 - ・試料量の少量化
 - 濃縮操作の省略
- ハイフネーション技術のインターフェース
 - ・前処理装置との連結、オンラインGC/MS分析システム (SPE-GC、LC-GC、GPC-GC等)

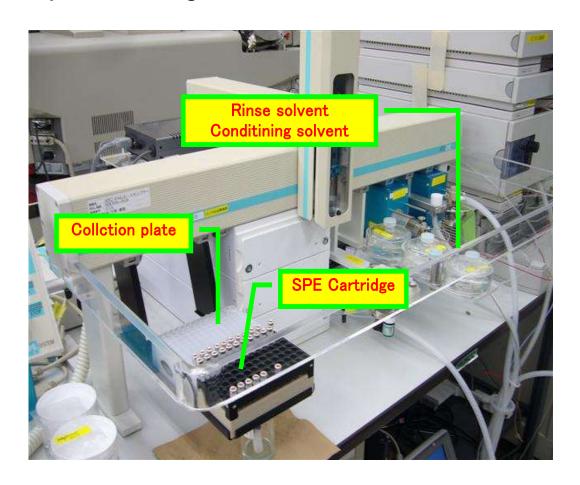
AISTI SCIENCE社 LVI-S200



大量注入法

■ 胃袋型インサートがその大量注入を容易にします。

CombiPALを用いることで...


- ■固相抽出から大量注入までを自動化することにより再現性の優れた超 高感度GC/MS解析が可能。
- ◆大量注入で大きなシリンジを使用する場合、洗浄溶媒が直になくなってしまうという欠点があるが、CombiPALでは十分な洗浄溶媒量が確保できるため、安心して分析できる。
- いろいろな大きさのシリンジサイズに簡単に変えられ、またそのシリンジサイズの最大まで注入することが可能である。
- 新しく設置したLVI-S200の注入口と既存の注入口の両者をそのまま使用することが可能である。
- LVI-S200を用いることで注入口の中で誘導体化を行うことが可能。

Method Development for Determination of Atorvastatin and Its Metabolites in Human Plasma Using ITSP System

A. Sakurai ¹, Y. Bandoh ² (Toray Research Center, Inc. ¹, AMR, Inc. ²)

ITSP System

ITSP can automatize the process of conditioning, sample loading, elution and injection using PAL.

Expected Benefit

- 1. Efficient sample processing
- 2. Reduction of re-analysis caused by human error
- 3. Saving reagent consumption
- 4. Improvement of reproducibility in SPE and analysis etc

ITSP system could have a high degree of availability for processing of huge number of samples. (e.g. clinical examination, clinical research...)

Structures of Atorvastatin and Its Metabolites

IS (Simvastatin hydroxy acid)

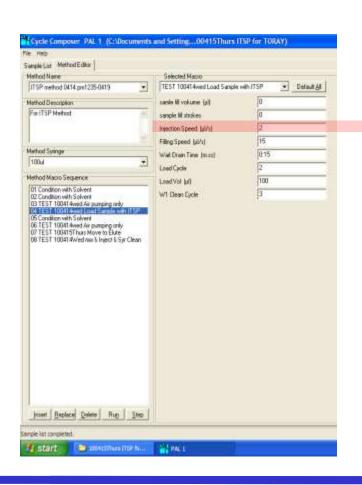
Quantitative Analysis

- ♦Human plasma: 20 μL
- **◆**Calibration curve: 0.25 to 100 ng/mL
- **♦**Assay reproducibility QC samples; LLQC, LQC, MQC and HQC (4 levels)

Acceptance criteria

Calibration curve

%Nominal: 85.0 to 115.0% (80.0 to 120.0% at the LLOQ) At least three-quarters of the calibration standards including the LLOQ and the ULOQ of the calibration standards should meet the above criteria.


Assay reproducibility

% Nominal: 85.0 to 115.0% (80.0 to 120.0% for LLQC)

Pretreatment Procedure

Plasma sample

ITSP

- **STEP 1 SPE cartridge conditioning**
- **STEP 2 SPE** cartridge conditioning
- **STEP 3** Load onto SPE cartridge
- **STEP 4 Wash**
- **STEP 5** Elute
- **STEP 6 Dilution**
- **STEP 7 Injection**

Calibration Curve

(1/x weighting)

Atorvastatin concentration (ng/mL)								
0.250	0.500	1.00	5.00	25.0	50.0	100		
0.215	0.538	0.984	5.36	24.9	51.6	98.1		
86.0	107.6	98.4	107.2	99.6	<i>103.2</i>	98.1		

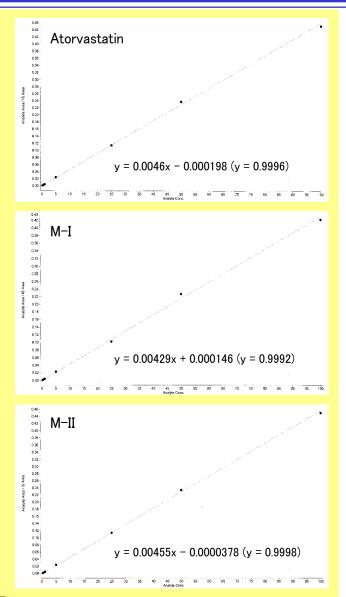
Upper value: Observed concentration (ng/mL)

Lower value: %Nominal

(1/x weighting)

						(1/20191	·····9/				
			M-I cor	M-I concentration (ng/mL)							
	0.250	0.500	1.00	5.00	25.0	50.0	100				
•	0.236	0.505	0.983	5.38	23.8	52.8	98.1				
	94.4	101.0	98.3	107.6	95.2	105.6	98.1				

Upper value: Observed concentration (ng/mL)


Lower value: %Nominal

(1/x weighting)

					\	0,	
M-II concentration (ng/mL)							
0.250	0.500	1.00	5.00	25.0	50.0	100	
0.223	0.539	0.964	5.30	25.0	51.2	98.6	
<i>89.2</i>	107.8	96.4	106.0	100.0	102.4	98.6	

Upper value: Observed concentration (ng/mL)

Lower value: %Nominal

Toray Research Center, Inc.

Assay Reproducibility

Quantitative results

Compound name	Atorvastatin			M-I			M-II					
QC sample	LLQC	LQC	MQC	ULQC	LLQC	LQC	MQC	ULQC	LLQC	LQC	MQC	ULQC
QC sample	0.250	0.500	5.00	80.0	0.250	0.500	5.00	80.0	0.250	0.500	5.00	80.0
Found	0.301	0.524	4.68	71.9	0.215	0.468	4.47	69.5	0.235	0.561	4.90	72.5
Concentration	0.263	0.384	5.61	77.7	0.211	0.520	5.24	69.9	0.213	0.464	5.34	77.1
(ng/mL)	0.287	0.495	4.66	70.7	0.247	0.448	4.29	68.2	0.202	0.466	4.54	72.1
Mean	0.284	0.468	4.98	73.4	0.224	0.479	4.67	69.2	0.217	0.497	4.93	73.9
%Nominal	113.5	93.5	99.7	91.8	89.7	95.7	93.3	86.5	86.7	99.4	98.5	92.4

$$%Nominal = \frac{X}{C_{nom}} \times 100$$

C_{nom}: Nominal concentration (ng/mL)

X: Mean found concentrations (n=3)

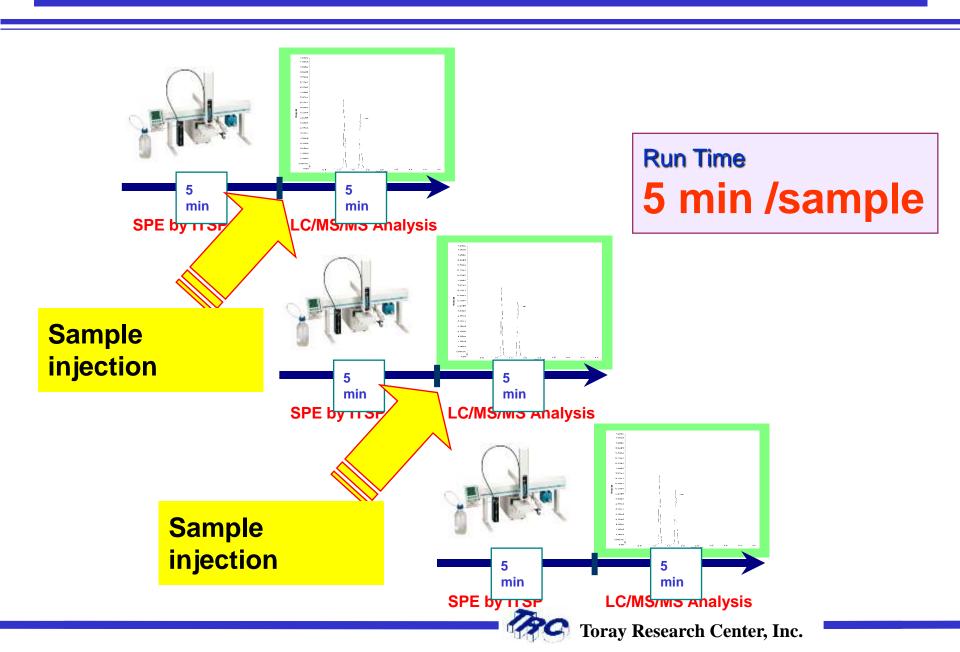
%Nominal:

LLQC

86.7to

113.5%

LQC, MQC and HQC


86.5 to

99.7%

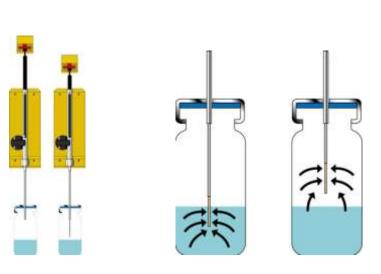
The accuracy (%Nominal) values of analytes met the acceptance criteria.

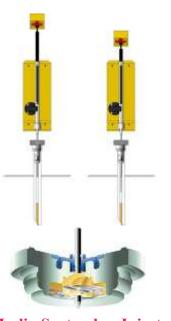
Run Cycle

Conclusion

Other evaluation items

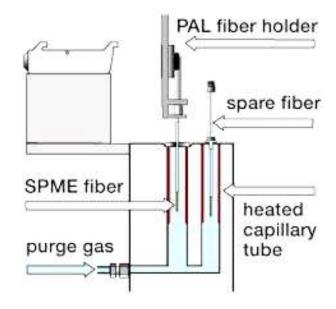
Item	Conditions	Result
	Atorvastatin	72.7 to 75.6%
Dogovovy tost	M-I	78.5 to 98.6%
Recovery test	M-II	71.6 to 89.3%
	IS	67.8%
System reproducibility	IS peak area (n = 20)	8.9% (%CV)
Cotamination		Not detected


This method can be useful for quantitative assay on Atorvastatin and its metabolites in human plasma.



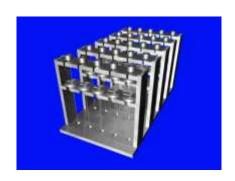
SPME (固相マイクロ抽出)インジェクション

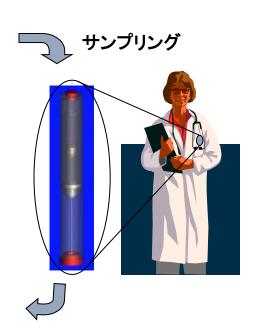
- SPMEシリンジュニットを簡単に装着
- SPMEシリンジファイバーを装着したまま攪拌が可能: 250rpm 750 rpm
- ファイバーコンディショニングステーションによりファイバーのコンディショニングが自動化
- 溶媒を用いないサンプル濃縮



SPME Fiber Conditioning Station

- SPMEファイバーのコンディショニングの自動化
- 350℃まで温調可能
- イナートなガスでパージ (He or N2)
- セカンドコンディショニングポートも用意

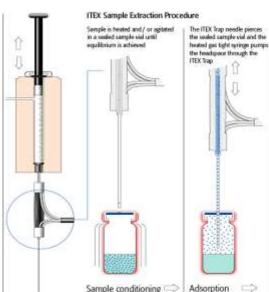

SPME Multi-fiber System オプション

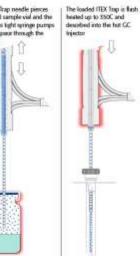

環境分野などでフィールドサンプリングが可能になるといろいろな場所または定期的な採取によるサンプル数が増加し多くの SPMEファイバーの分析が必要になる。

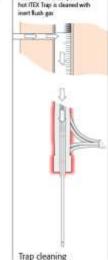
エアーサンプリング ペンサイズPassiveSPME サンプラー さまざまな環境(野外フィールド、病院、研究所、工場、 火事現場、室内)での揮発物質/VOCのモニタリング

PALファイバーホルダーに装着(25本)

ITEX II インジェクション 超高感度ヘッドスペース分析




- Tenax等の吸着剤をシリンジ本体に装備して吸着/熱脱離を行う。
- 簡単に超高感度ヘッドスペース分析が可能
- PALシステムのみに装着可能な技術
- GCの改良や変更、クライオフォーカシングも必要ない。
- 新タイプのITEXIIオプションは現行のPALのインジェクターに簡単に装着可能(Z軸交換は不要)
- シリンジニードルはSiltek処理(不活性化)


吸着レジン Tenay TA 80

Tenax TA 80/100
Tenax GR 80/100
Carbosieve S3
80/100
Carboxen 1000 60/80
Carbopack X 60/80
Carbopack X 20/40
Carbopack C 80/100
Hayesep D 100/120
Porapak Q 50/80
Porapak Q 120/150
Porapak R 120/150
Tenax GC 60/80

Desorption

After thermal description the

GC Conditions

Injector: Varian 1177 - 250 °C

Split: 1:10

Flow: Helium - 1.0 mL/min

Liner: Siltek split liner with glass frit (Varian Part Number RT21045214

(Varian Fart Number N12

Column: FactorFour VF-5 ms, 30 m x 0.25 mm x 0.25 μm,

(Varian Part Number CP8944)

Oven Program:

am:	Temp	Rate	Hold
	(°C)	(°C/min)	(min)
	60	0	1
	150	10	0

MS Parameters

Trap Temp.: 180 °C

Transfer Line Temp.: 200 °C Manifold Temp.: 50 °C

Mass Range: 41-200 Da

Target TIC: 20,000 Emission Current: 10 μA

uScans: 3

ITEX-2 Conditions

Trap: Tenax TA 80/100 mesh

Agitation Time: 5 min Agitation Temp.: 80 °C Extraction Strokes: 20 Extraction Volume: 1.0 mL

Desorption Rate: 50 μL/s Injection Volume: 1 mL

Headspace Conditions

Syringe Temp: 80 °C
Agitator Temp: 80 °C
Incubation Time: 5 min
Plunger Fill Speed: 100 µL/s
Injection Speed: 250 µL/s
Injection Volume: 1 mL

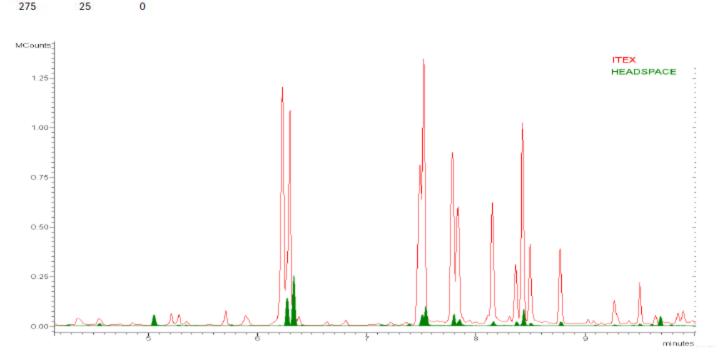
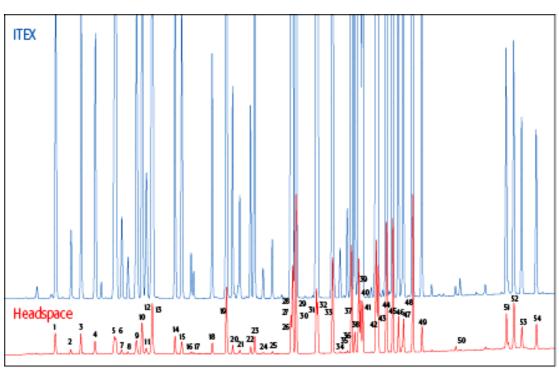



Figure 2. Overlay of TICs for standards run with static headspace (green) and ITEX-2 (red). In this example, ITEX-2 is 10-30 times more sensitive than static headspace.

ITEXと通常のヘッドスペース分析との比較

ITEX Extraction versus Static Headspace Analysis

Static Headspace Parameter

60C / 10min / 1ml sample volume

ITEX Parameter:

Extraction Speed:100l / sec.

Total Pumping Strokes: 50

Temperature Pumping Syringe / Sample Incubation: 60C / 10min.

Desorption at 200C, 15sec. splitless

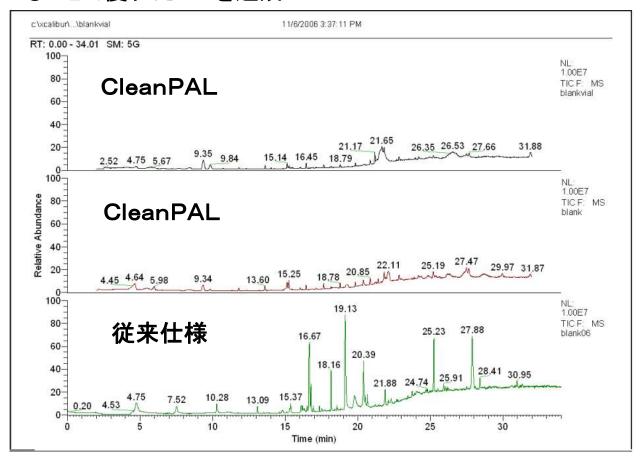
Chromatography:

Injection: Splitless 15sec. at 250C / Carrier gas: 0.2bar hydrogen

Column: Rtx-502.2 60m x 0.32mm ID, 1.8m film

Temperature Program: 40C - 1min. - 10C / min to 220C

Detection: FID 250C


Comparison of ITEX analysis versus Static Headspace

Sample: Purge and Trap calibration mix (Restek Cat.No. 30431 502.2 CAL2000 Mega-Mix)

独自開発されたClean PAL仕様(AMR)でのITEX分析

パージラインを溶出によるコンタミネーションがないような材質に改良されたAMR独自開発のCleanPAL仕様を併用することで優れたS/Nを達成

DARTはサンプルかざすだけ

Introducing the latest in DART technology

■DARTとは?

DARTイオン化法 による新しいタイプの質量分析用イオン源

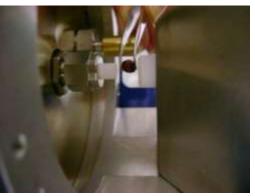
EI (電子イオン化)法

CI (化学イオン化)法

MALDI (マトリックス支援レーザー脱離イオン化)法

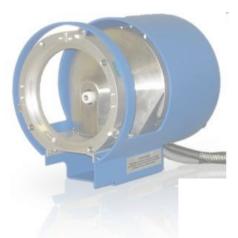
ESI (エレクトロスプレーイオン化)法

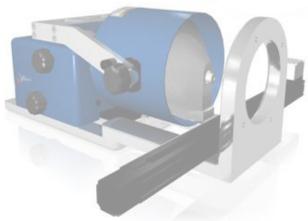
APCI (大気圧化学イオン化)法


APPI (大気圧光イオン化)法

DART (リアルタイムで直接イオン化(?))法

かざすだけでイオン化

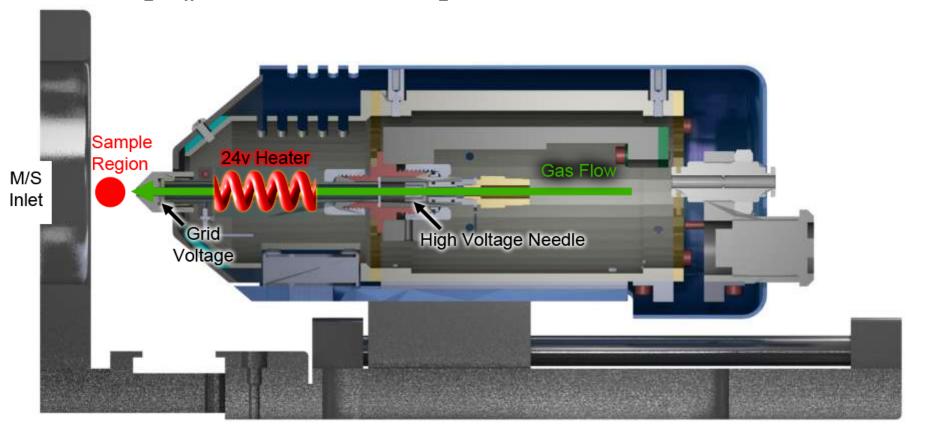



DART-SVP

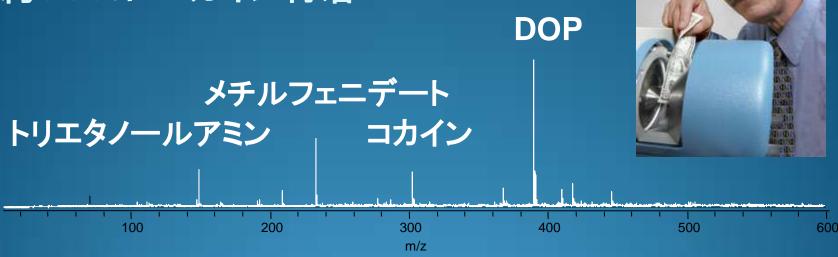
DART 100 CE

DART-ET

互換性

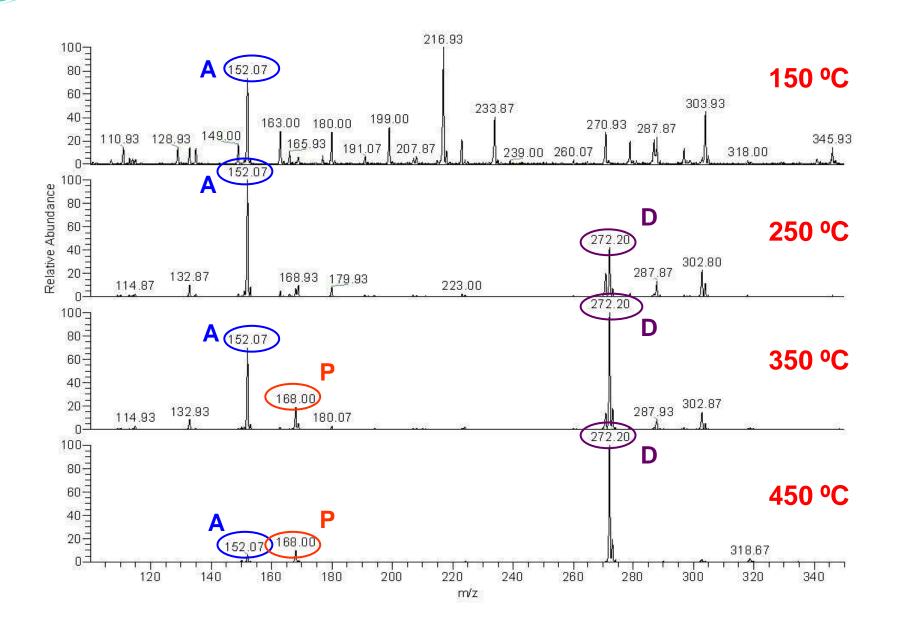


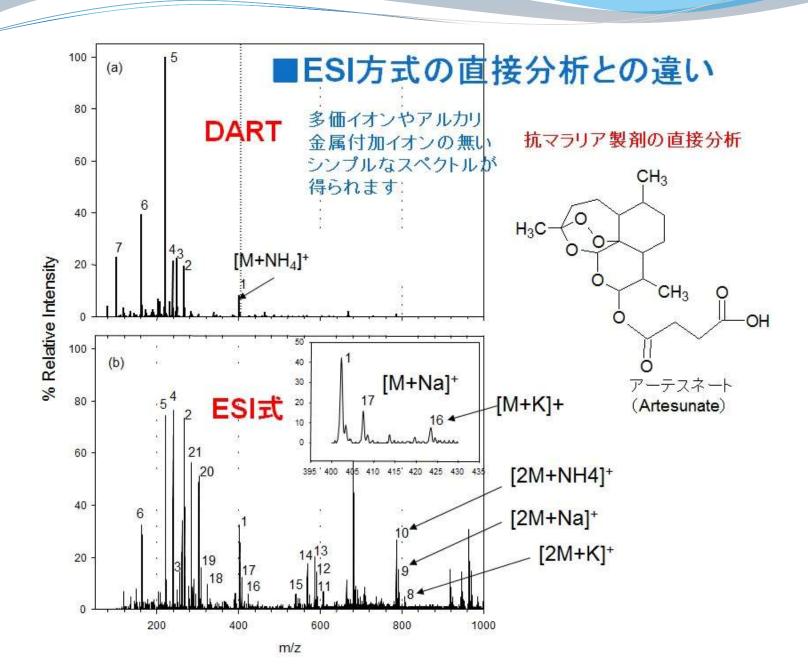
Waters


IDART Ion Source 仕組み

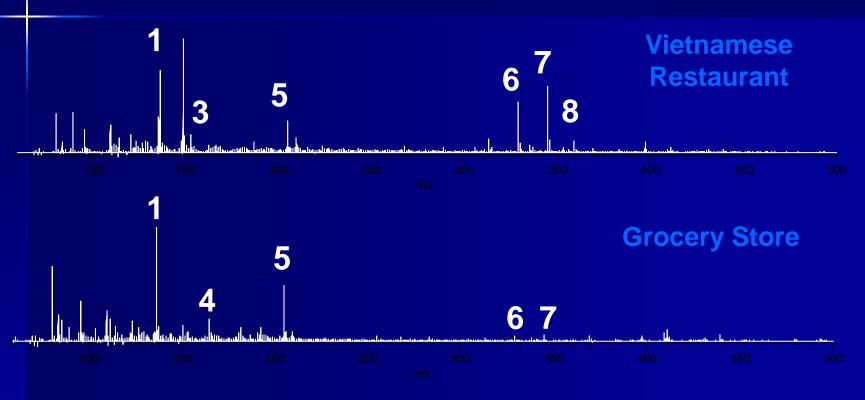
He(2³S) + H₂O \rightarrow H₂O⁺⁺ + He(1¹S) + e⁻ H₂O⁺⁺ + H₂O \rightarrow H₃O⁺ + OH⁺ H₃O⁺ + nH₂O \rightarrow [(H₂O)_nH]⁺ [(H₂O)_nH]⁺ + M \rightarrow MH⁺ + nH₂O

・グロー放電によって生じたHeのメタステーブルが大気中の水分子をイオン化 →クラスターになった水イオンがサンプルにプロトンを付加 (ポジティブモード)

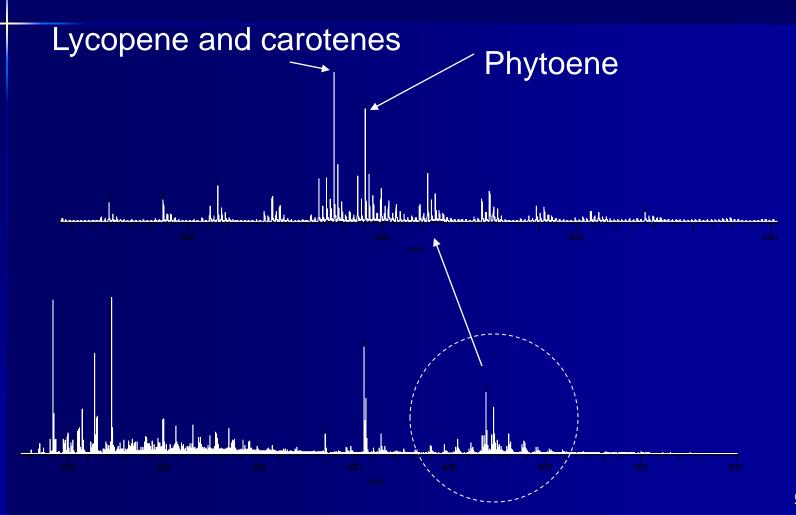

■米流通のドル紙幣、
約90%にコカイン付着!?

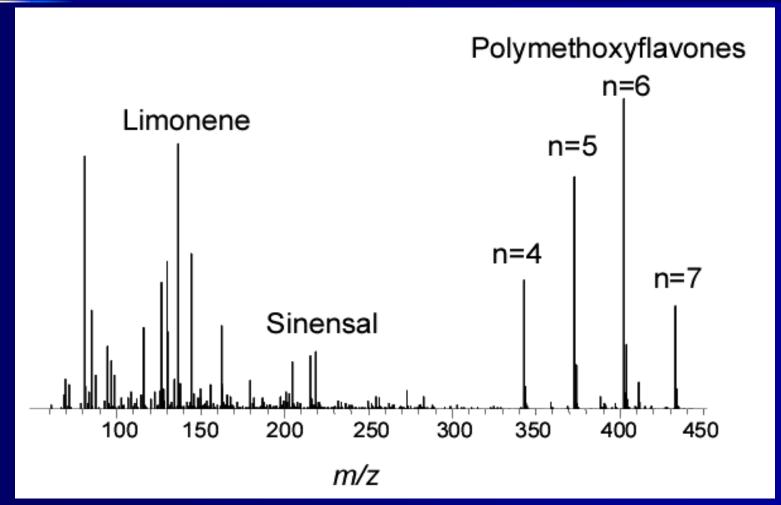


- 1. トリエタノールアミンは、化粧品で用いられるpH調整用成分です
- 2. 化合物はMH+として検出されます
- 3. 紙幣上の一般的な物質:日焼け止め、虫よけ(DEET)、ニコチン、グリセロール、ポリエチレングリコール(印刷工程から?)

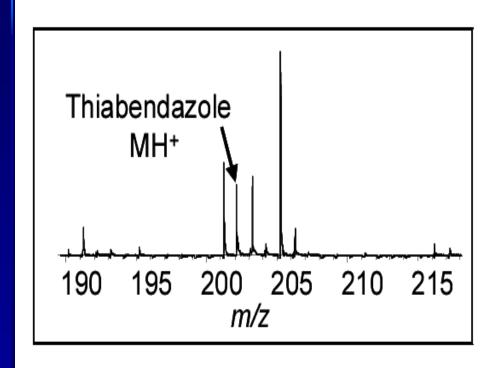

Temperature Profile Phase of Method Development

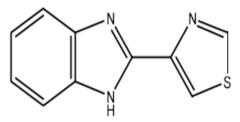
Daytime Caplet - 4 DART-ET Temperatures - Search for 3 Active Ingredients


Two Basil-Leaf Chemotypes


- 1. C₁₀H₁₆ (pinene, terpinine)
- 2. $C_{10}H_{12}O$ (methylchavicol)
- 3. $C_{10}H_{16}O$ (citral)
- 4. $C_{10}H_{12}O_2$ (eugenol)

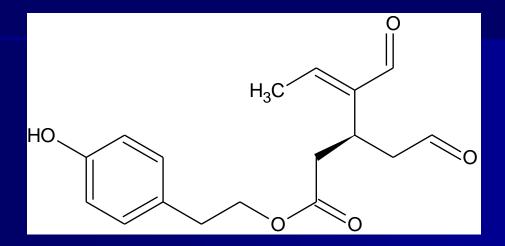
- 5. C₁₅H₂₄ (sesquiterpenes)
- 6. Hydroxytrimethoxyflavone
- 7. Dihydroxytrimethoxyflavone
- 8. Hydroxytetramethoxyflavone


Tomato Skin (Positive ions)



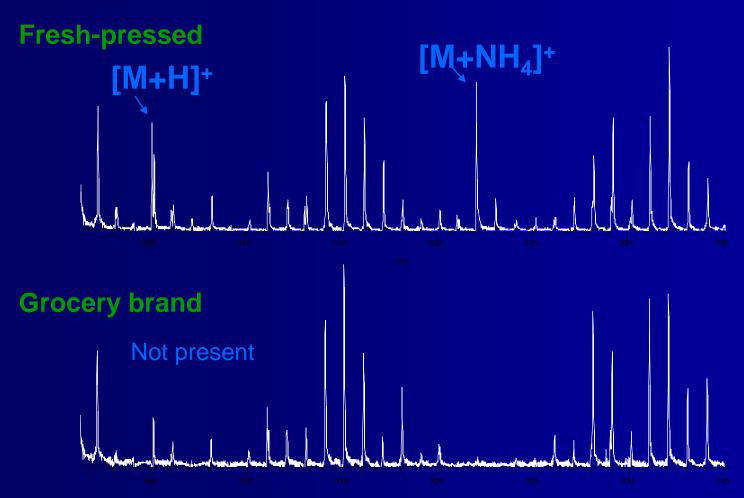
Orange Peel (Positive ions)

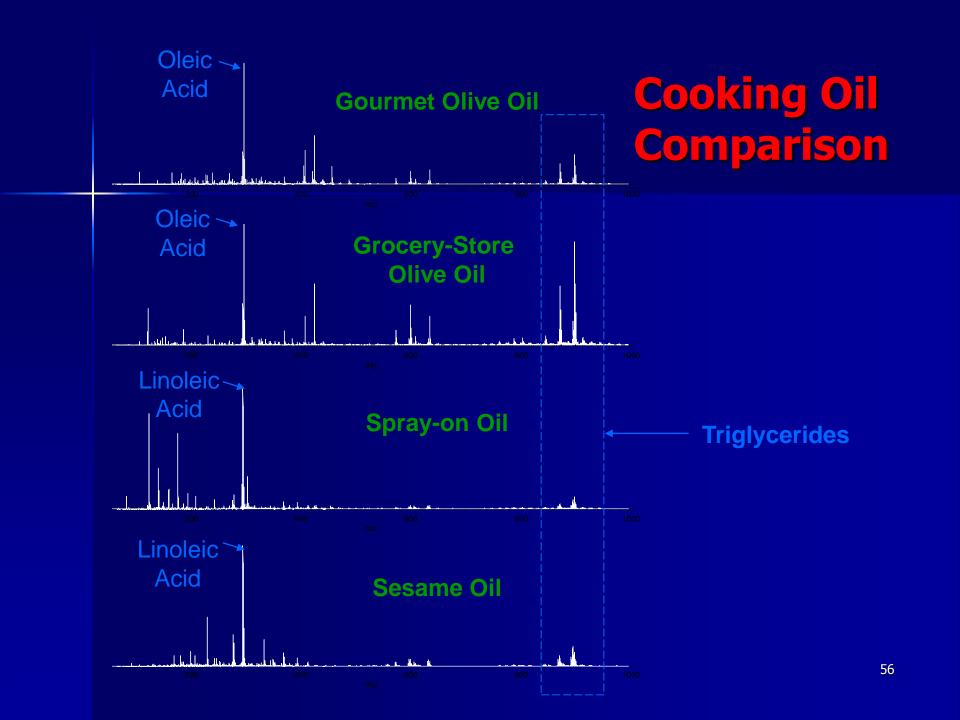
Pesticide Residue on Orange Peel (Positive ions)

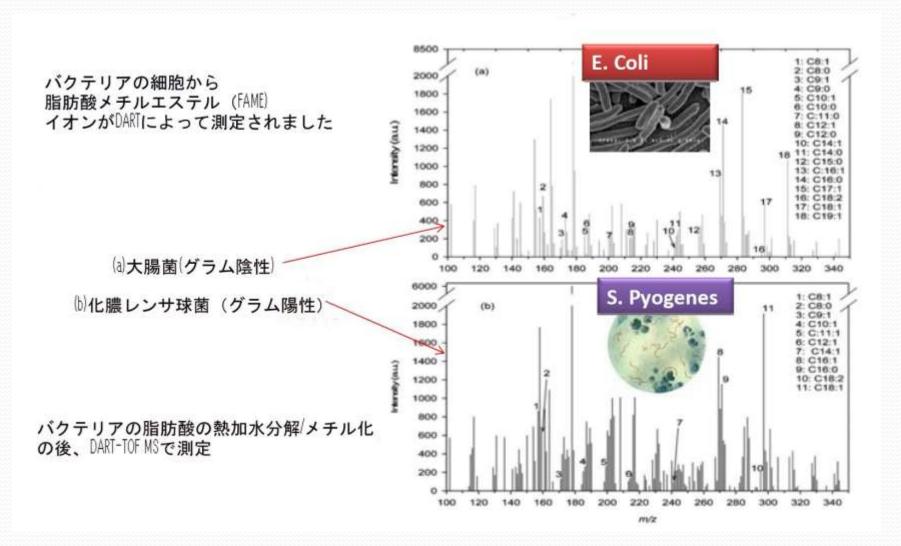

Thiabendazole

 $C_{10}H_7N_3S$

Measured: 202.0444 Da Calculated: 202.0439 Da

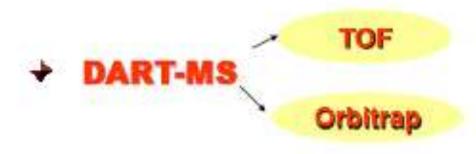

Difference: 0.0005 Da

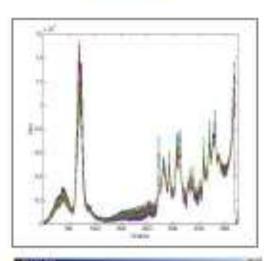

Oleocanthal

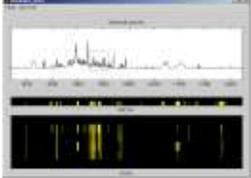

- Present in fresh extra-virgin olive oil
- Reported to have ibuprofen-like activity
- Beauchamp, G. K. et. al. *Nature* **2005**, *437*, 45-46. "Phytochemistry: Ibuprofen-like activity in extra-virgin olive oil"

Oleocanthal in Olive Oil

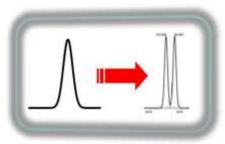
DART/MS-生化学分野への応用


Carrie Y. Pierce, John R. Barr, Robert B. Cody, Robert F. Massung, Adrian R. Woolfitt, Hercules Moura, Herbert A. Thompson and Facundo M. Fernandez, Ambient generation of fatty acid methyl ester ions from bacterial whole cells by direct analysis in real time (DART) mass spectrometry, *Chem. Commun.*, 2007, 807–809

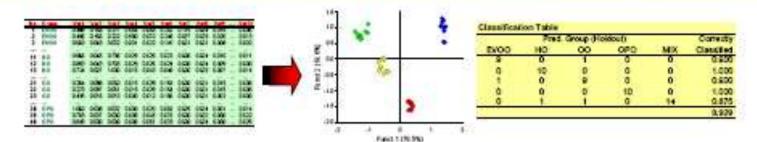



TRACEABILITY TOOLS

- Fingerprint methods employing advanced instrumental techniques
- Near infrared spectroscopy
- Fourier-transform mid-infrared spectroscopy
- Fourier-transform Raman spectroscopy
- Nuclear magnetic resonance spectroscopy
- Direct infusion mass spectrometry
- Gas / liquid chromatography-mass spectrometry

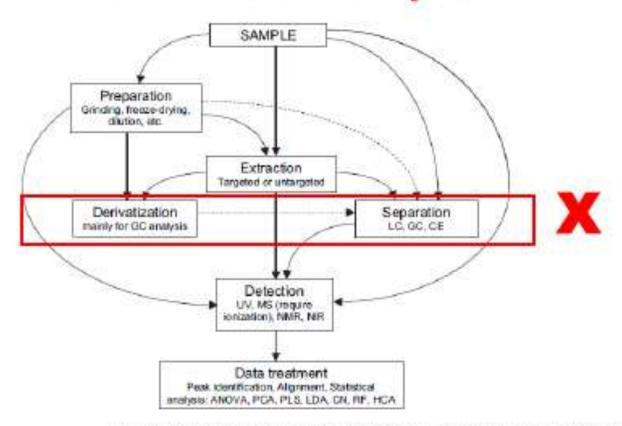


高分解能の威力



DART-TOF MS medium resolution (1~ 6000 fwhm)

DART-Orbitrap MS high resolution (10k-100k fwhm)


CHEMOMETRIC TOOLS

Investigation of data structure, statistical model formation

- Principal Component Analysis (PCA)
- Partial Least Squares Discriminant Analysis (PLS-DA)
- Linear Discriminant Analysis (LDA)
- Artificial Neural Networks (ANN)

Metabolomic based analysis

J.M. Cevallos-Cevallos et al. / Trends in Food Science & Technology 20 (2009) 557-566

Case study # 1

OLIVE OIL, ANIMAL FATS

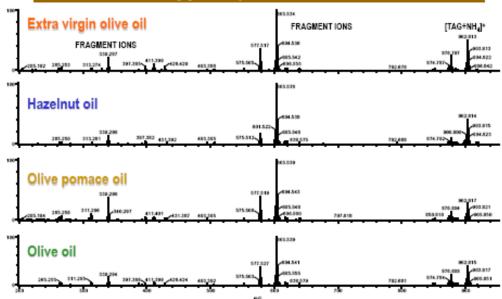
OLIVE OIL Examined samples

various quality grade and botanical origin:

- Extra virgin olive oil (EVOO)
- Olive oil (00)
- Olive pomace oil (OPO)
- Hazelnut oil (HO)

EXTRA VIRGIN OLIVE OIL

The oil obtained from the fruit of the olive tree solely by mechanical or other physical means under the conditions, particularly thermal conditions, that do not lead to alternations in the oil, and which has not undergone any treatment other than washing, decantation, centrifugation and filtration.


SAMPLE PREPARATION

- TAGs analysis: oil dilution with toluene (1:50, v/v)
- Polar compounds analysis: 2 min shaking of oil with MeOH-H₂O mixture (80:20, v/v)

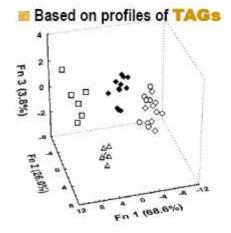
DART-TOFMS method

- IONZATION MODE: positive
- ANALYSIS TIME: 1 min
- GAS BEAM TEMPERATURE
 - (i) 350°C,
 - (ii) 220°C
- For TAGs analysis ammonia solution was employed as dopant

DART-TOFMS [+] mass spectra of **DILUTED OILS**

DART-TOFMS [+] mass spectra of POLAR EXTRACTS

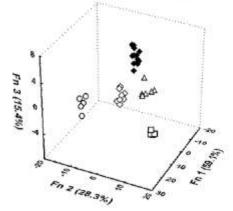
SAMPLE PREPARATION


- TAGs analysis: oil dilution with toluene (1:50, v/v)
- Polar compounds analysis: 2 min shaking of oil with MeOH-H2O mixture (80:20, v/v)

DART-TOFMS method

- **IONZATION MODE: positive**
- ANALYSIS TIME: 1 min
- GAS BEAM TEMPERATURE
 - (i) 350°C,
 - (ii) 220°C
- For TAGs analysis ammonia solution was employed as dopant

GROUPING ANALYSIS USING LINEAR DISCRIMINANT ANALYSIS (LDA)

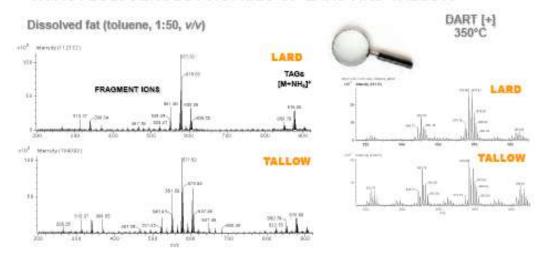

- △ EVOO □ HO O OPO
- 0 00 MIX
- EVOO, HO, OO, OPO, MIX → objects
- TAGs: markers → 11 masses → variables

Prediction ability 100% for the EVOO/HO mixtures in the range 50:50 - 85:15 (v/v)

Software statistiXL 1.8

GROUPING ANALYSIS USING LDA

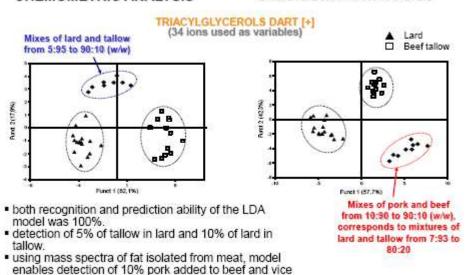
Based on profiles of POLAR COMPOUNDS


- \triangle EVOO □ HO O OPO
- 0 00
- MIX
- EVOO. HO. OO. OPO. MIX → objects
- Polar compounds: markers → 12 masses → variables

Software statistiXL 1.8

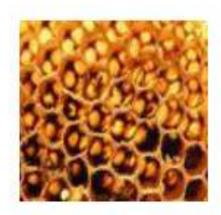
Prediction ability 100% for the EVOO/HO mixtures in the range 50:50 - 94:6 (v/v)

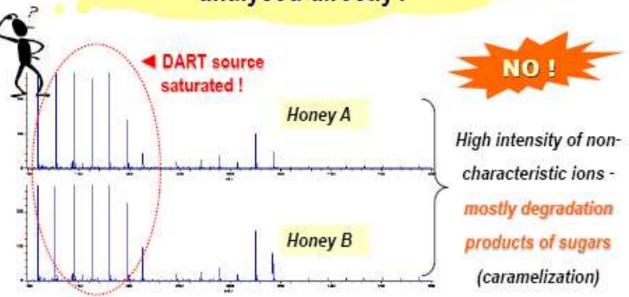
Note: Prediction ability was obtained on the basis of leave-one-out cross validation (LOOCV)


TRIACYLGLYCEROLS PROFILES OF LARD AND TALLOW

CHEMOMETRIC ANALYSIS

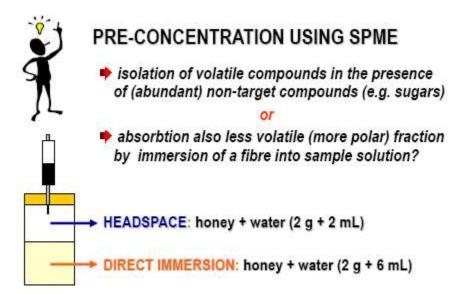
versa.

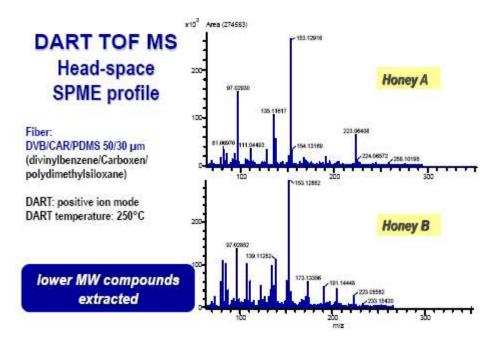

LINEAR DISCRIMINANT ANALYSIS

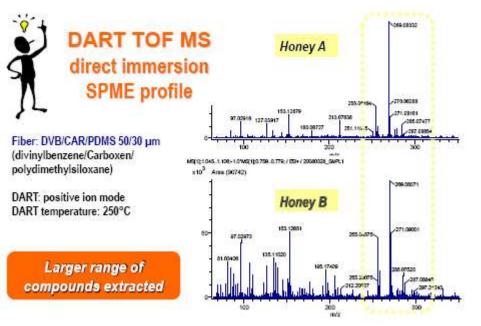

Case study # 2

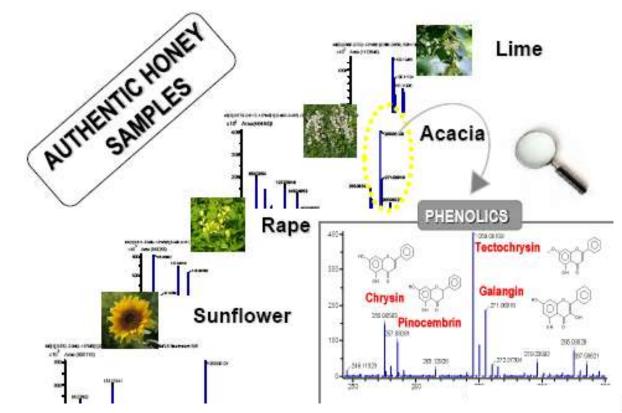
HONEY

Floral origin?

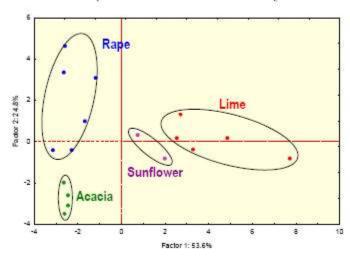



Can direct be honey analysed directly?




DART: positive ion mode, DART temperature: 250°C

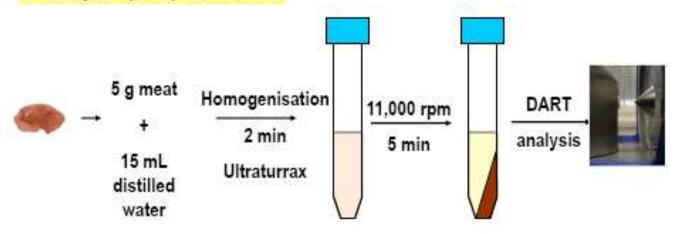
Honey + water (2 g + 2 mL)



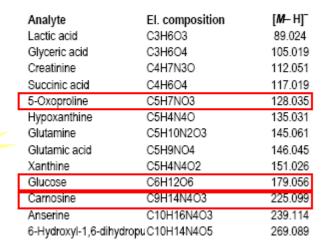
CLASSIFICATION USING PCA (20 marker masses selected)

Case study # 3

MEAT



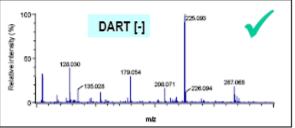
Meat freshness


POLAR COMPOUNDS ANALYSIS

Sample preparation

Identified compounds

DART negative ion mode

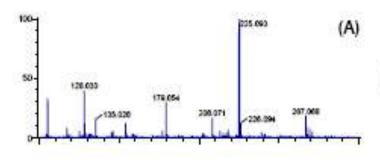

Major ions

DART MS PROFILES: PORK

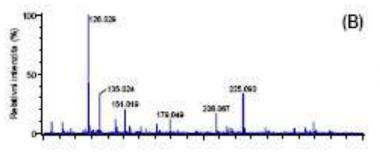
114,0880

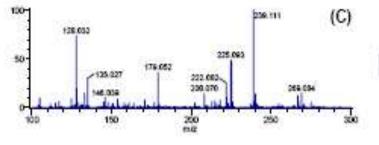
Not too many diagnostic ions present...

A lot of markers present in MS spectrum


Identified compounds

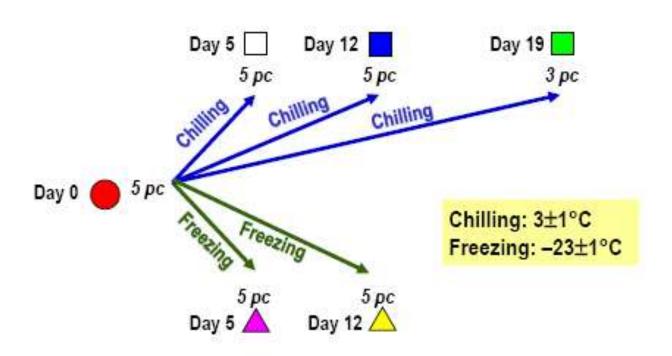
DART positive ion mode


Analyte	El. composition	$[M + H]^{+}$
Glycine	C2H5NO2	76.040
Cadaverine	C5H14N2	103.124
GABA	C4H9NO2	104.071
Histamine	C5H9N3	112.087
Creatinine	C4H7N3O	114.067
Proline	C5H9NO2	116.071
Threonine	C4H9NO3	120.066
Nicotinamide	C6H6N2O	123.056
Scatole	C9H9N	132.081
Hypoxanthine	C5H4N4O	137.046
Spermidine	C7H19N3	146.166
Methionine	C5H11NO2S	150.059
Histidine	C6H9N3O2	156.077
Camosine	C9H14N4O3	227.114
Anserine	C10H16N4O3	241.130



Pork

DART negative ion mode



Beef

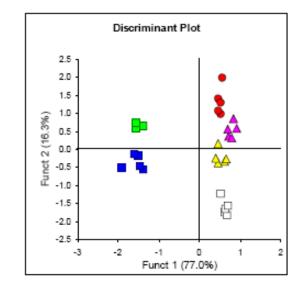
Rabbit

PORK FRESHNESS

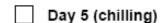
□ CHEMOMETRIC ANALYSIS

Step 1: 30 markers selected (DART negative ion mode)

Step 2: Normalisation to a maximum variable in the spectrum of each sample

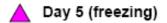

Step 3: Principal Component Analysis

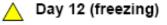
Step 4: Linear Discriminant Analysis

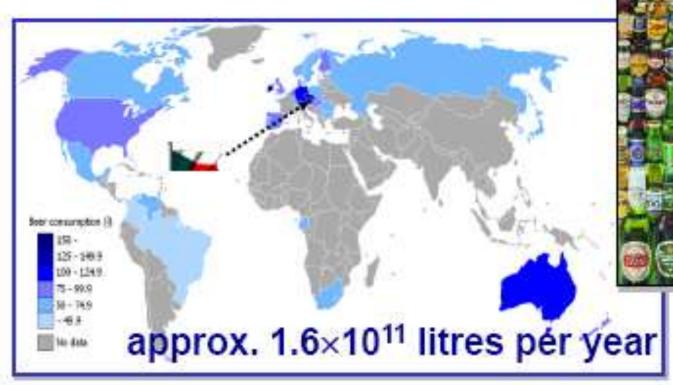

→ model formation using the most important principal components m/z

Marker	Marker
105.01	226.10
117.01	237.06
128.03	239.11
135.02	241.09
145.05	251.11
146.04	267.07
147.03	269.09
171.00	271.10
177,03	275.10
179.05	293.16
202.08	315.13
208.07	333.09
218.07	356.12
223.08	434.18
225.10	451.20

□ CHEMOMETRIC ANALYSIS







BEER CONSUMPTION IN THE WORLD

Question: Where is the darkest spot ...?

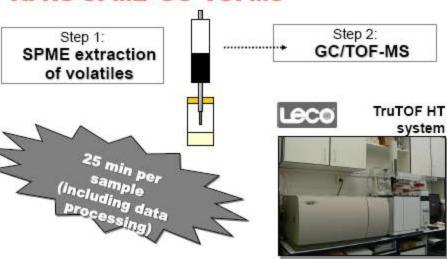
Source: en.wikipedia.org

BACKGROUND OF THE STUDY

Aim of study

DISTINGUISH ROCHEFORT BRAND FROM OTHER TRAPPIST AND NON-TRAPPIST BEERS

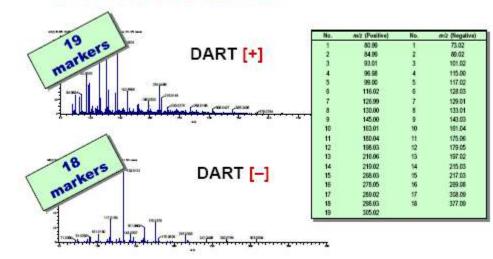
- 400 different beers in Belgium
- Trappist beer is local speciality
- Beer samples involved in study:
 - Rochefort
 - other Trappist
 - non-Trappist


OVERVIEW OF SAMPLES

- OTrappist beer (n = 137)
 - Rochefort 6 (n = 6)
 - Rochefort 8 (n = 48)
 - Rochefort 10 (n = 26)
 - Other Trappist beers (n = 57)
- Non-Trappist beers (n = 128)

Samples were collected continuously over one year to cover possible seasonal variability of the products.

A. HS-SPME-GC-TOFMS


HS-SPME-GC-TOFMS VOLATILES PROFILE

B. DART-TOFMS: direct measurement

DART-TOFMS SPECTRA

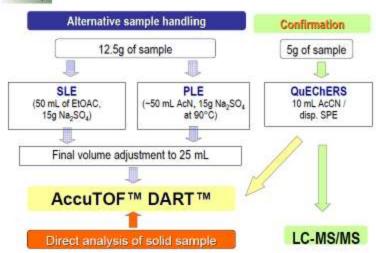
Overall aim of the Work package

Development of rapid screening methods for a specific class of fungicides (strobilurins) in cereals

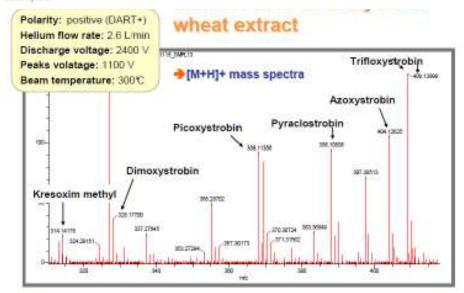


Work to be completed at ICT Prague...

(iv) Testing of a new generation of DART ion source "Baby DART" → improvement of performance characteristics expected...



BioCop


EXPERIMENTAL SET-UP

Presented by Chemalys with sildes from Jane Hejslova

22

Presented by Chemalys with slides from Jene Hejslovs

Crude ethyl acetate extract spiked with strobilurins at 120 µg/kg

23

Institute of Chemical Technology, Prague, CZ

Leading Czech research institution in chemistry and related fields with a long history of relationships with industry both in the Czech Republic and abroad.

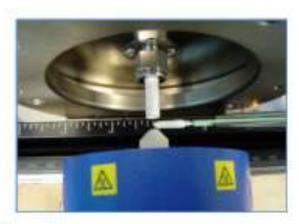
Direct successor to the Chemistry Department of the Prague Polytechnic, officially called the Royal Czech Polytechnical Institute, founded by Emperor Francis II. in 1803.

互換性

Waters

■まとめ

- DARTは物質の表面を大気圧下・非破壊でサンプリングできる新しいタイプの質量分析用イオン源
- 気体、液体、固体の分析
- ESIやAPCIなどでカバーしきれない極性範囲もイオン化が可能
- 一価イオンのみ生成し、アルカリ金属付加イオンなども生じないため、シンプルなスペクトルが得られる
- Thermo, Waters, Bruker, ABI, Agilentなど各社MSに対応
- 食品中の成分、フレグランス、脂質、紙上のインク、尿中の代謝物、錠剤中の賦形剤・有効成分、ポリマー・ポリマー添加剤などの分析、リアクションモニタリングなど様々なアプリケーションが可能

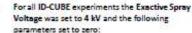

ID CUBETM

Enabling Near Instantaneous Characterization of Chemicals using DART Technology

DART-SVP Ion Source

ID-CUBE: Built on DART Technology

Fundamentals of the ID CUBE


- Stand alone source
- High current power supply
- Enables consumable: OpenSpot™ sample consumable card (OSSC)
- Designed for rapid vaporization of sample into the DART ionizing gas
- No method development required for different samples

MS Instrumentation

Thermo Exactive

- Accurate mass measurements within 3 ppm for all work presented (external)
- Scan Parameters:
 - Positive & Negative Ion Modes
 - Resolution: "High" 50,000
 Fragmentation: None, HCD Gas Off
 - Scan Settings: 1 µ-scan by 250 ms max inject time
 - AGC Target: Balanced (1e⁶)
- Exactive Inlet Parameters:
 - Capillary Temp: 200° C 200°
 - Capillary Voltage: 25 V -50 V
 - Tube Lens Voltage: 120 V -120 V
 Skimmer Voltage: 26 V -25 V

Sheath Gas Flow, Aux Gas Flow, Sweep Gas Flow

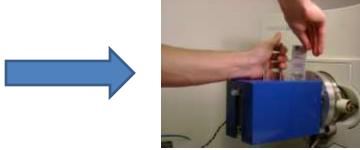
The OpenSpot Sample Card (OSSC)

- Consumable for ID Cube
- Business Card shape and size
- Sample applied to narrow cutout in metal screen
- Sample information can be written on the card
- Integral part of the thermal desorption process

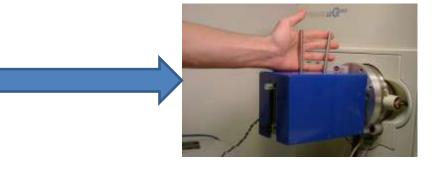
Spotting the card

 Spot solution with pipettor, or place droplet of liquid containing analyte on center spot

Card is ready to analyze



Actions


 Finger clamps are squeezed

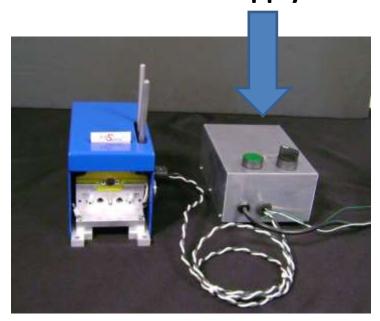
 Sample card is inserted into the guide slot

 User releases the clamps to complete the electrical circuit

Positioning

- The card carrying the sample positioned in the circuit
- Without current no desorption occurs unless the sample vapor pressure is high

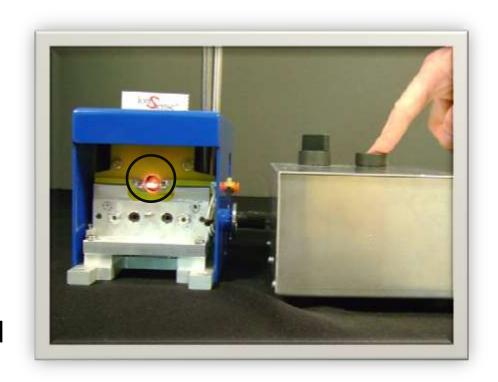
ID CUBE ™ with sample in place



Vapur ® interface removed for picture

The Power Supply

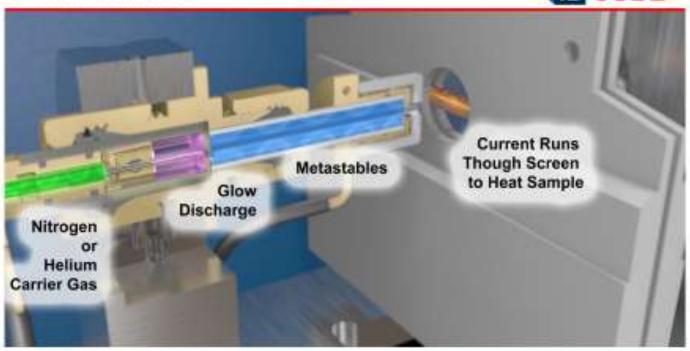
- A novel power supply provides high current through the circuit
- User selects heating rate (High-Med-Low)
- Push button to start and release to stop
- Resistance in the wire screen generates a localized heat


Variable current power supply

Simple and easy to use design!

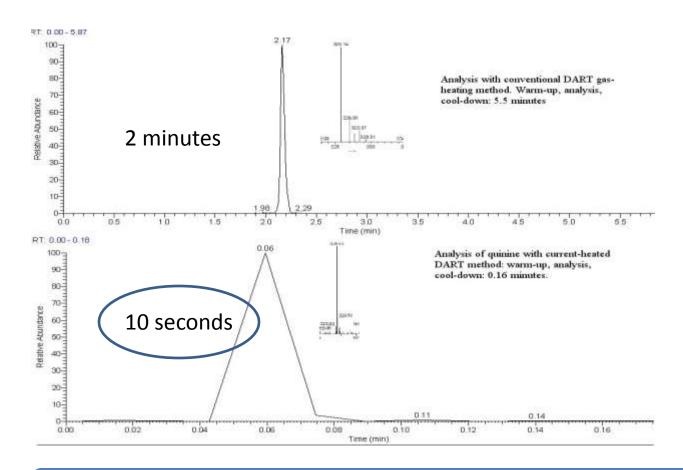
Rapid Heating of the Sample

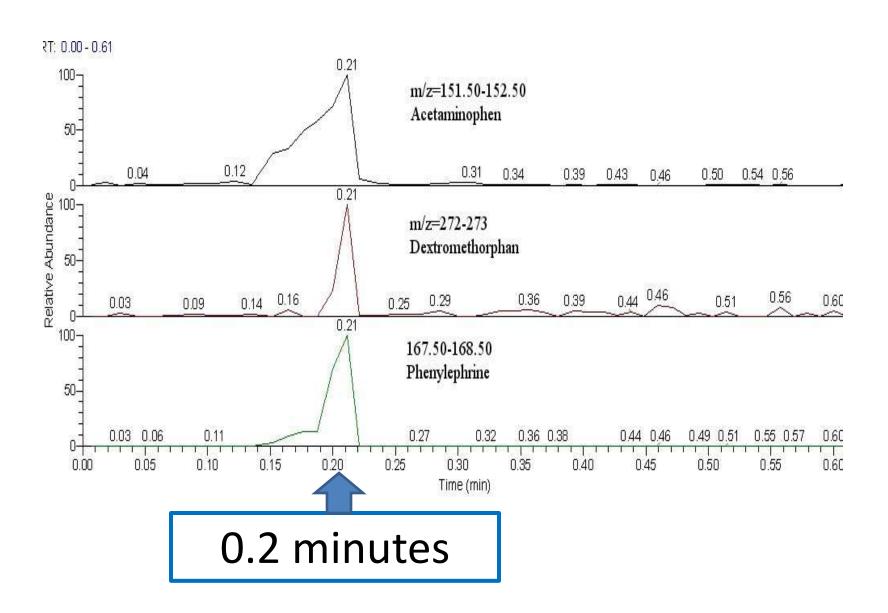
- Depressing the power supply on switch drives several amps through the mesh screen
- Vaporization is rapid as the screen becomes red hot in seconds
- Releasing the power supply switch stops the current and ion production as well



Sample Vaporized in 5-10 seconds!

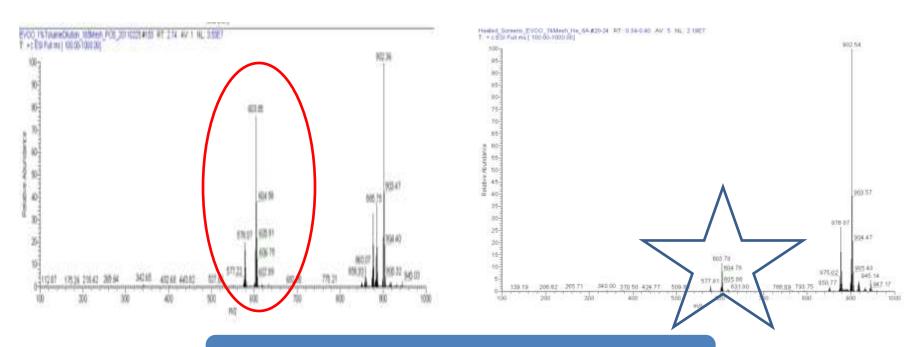
ID-CUBE™ Ionization Source


How it Works



Thermal Assisted DART Next Generation Open Access

Instantaneous Up and Run time!


Analysis of Tylenol Tablet

Effect on Thermal Degradation

Conventional DART 450° C

ID-CUBE Technology

Reduced fragmentation!