Sample prep and analysis of FAMEs and MCPDs

Tobias Uber, Andreas Bruchmann, Günter Böhm

Axel Semrau®

 Analysis of FAMEs Methods
 Example data Advantages of automation

Analysis of MCPDs Methods Example data Advantages of automation

Summary

Fatty Acids as FAME by GC and GC/MS

Main applications: food & fuel

• Determination of fatty acid composition and content in food

The saturated fatty acid (SFA) content in the daily diet should be < 10 % to reduce the risk of diabetes

Requirement to declare fat content / composition on packaging label \rightarrow EU regulation No 1169/2011 coming into force in Dec 2016

 Determination of biodiesel composition to ensure product quality EN 14103: Determination of total FAMEs and linolenic methyl ester (C18:3)

FAMEs, Official Methods

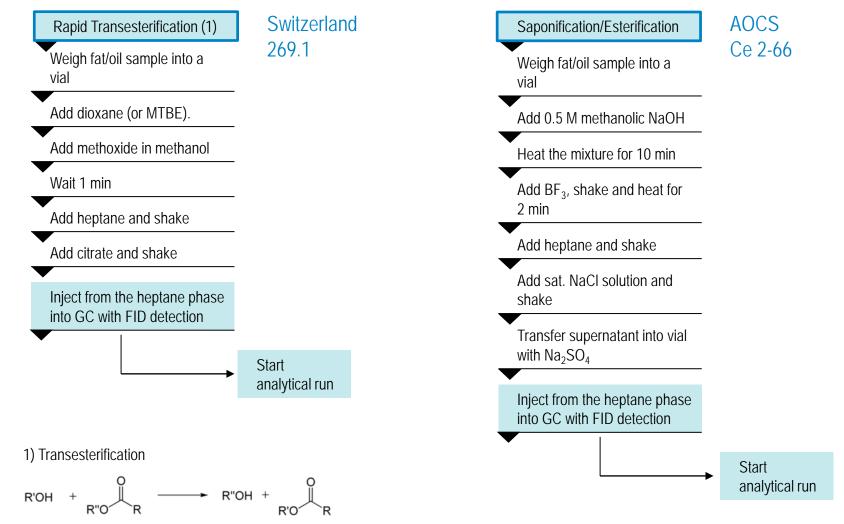
AOAC

nalysis of AOAC INTERNATIONAL 19th Edition, 2012

The Scientific Association Dedicated to Analytical Excellence

Methods

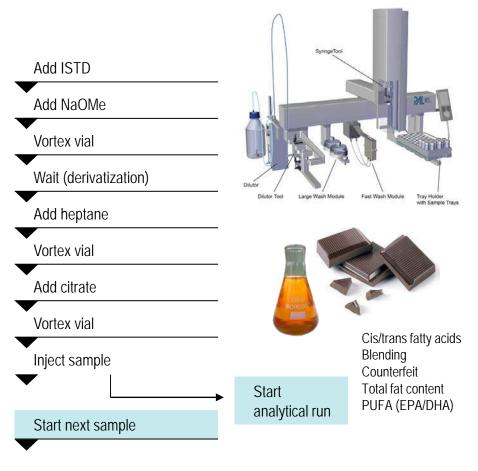
Editor Dr. George W. Latimer, Jr.


Official methods for different matrices

 AOAC official methods (GC-FID methods) 						
996.01 Fat in cereals (e.g. infant formula)						
996.06	Fat in food (general, saturated and unsaturated)					
985.21	trans-fatty acids/PHO in margarine					
991.39	PUFA in fish oils					
969.33	Fatty acids in oils and fats					
 AOCS official me 	thods (GC-FID methods)					
Ce 1i-07	PUFA in fish oils					
Ce 1h-05	cis/trans, SAFA, MUFA, PUFA in oils and fats					
Ce 2b/c-11	Fat in food, beverages, tissues, oils					
Ce 2-66	Fatty acids in oils and fats					
Ce 1e-91	FAMEs of long-chain fatty acids					
 European official 	methods					
12966 – 14.	ISO method for animal and vegetable fats and oils					
2001:1352	European Pharmacopoeia method					
269.1	Ministry of Health, Switzerland					

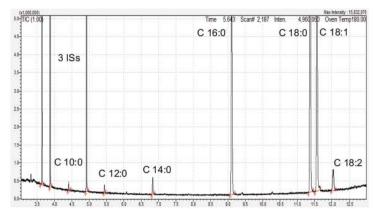
FAMEs Sample Preparation

Two official methods – two workflow examples


Transesterification Workflow

Fat content/composition of 10 different chocolates

- Transesterification of fatty acid esters with Namethoxide is a fast (90 sec), efficient and very robust method.
- The PAL RTC allows full automation of the FAME sample preparation, including injection into the GC. This improves process safety and minimizes handling errors.
- 75 samples can be analyzed automatically in 24 hours (limiting factor = GC runtime). The system can process one sample while an other sample is being analyzed ("prep ahead").


Fat content/composition of chocolate

Boehm et al., Poster for ISCC 2016, Riva, Italy

- 10 chocolate samples
- Cocoa butter & palm oil standard
- Fatty acid composition from C10:0 to C18:2
- Check for presence of palm oil

60

Figure 3: Chromatogramm of FAMEs from a milk chocolate sample

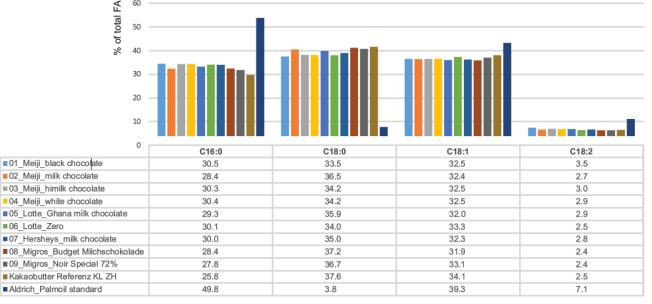
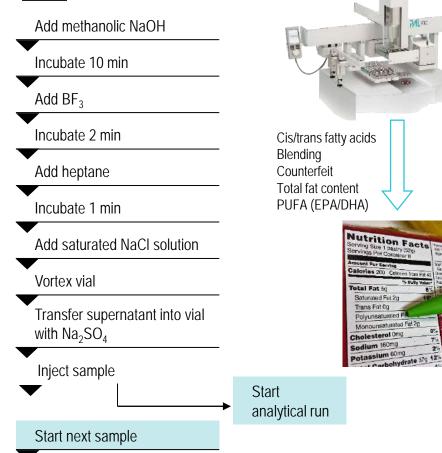


Figure 4: Fatty acid profile of different chocolate samples, as well as cocoa butter and palm oil reference samples.


AOCS Workflow

AOAC 996.01

- Saponification of fatty acid esters with methanolic NaOH
- Esterification with methanolic BF₃ For fatty acids with an acid value < 2 methanolic KOH is used without meth. BF₃
- With PAL RTC the FAME preparation, including handling of the hazardous BF₃ and injection into the GC, can be fully automated.
- This improves operational and process safety and minimizes handling errors.
- 50 samples can be analyzed in 24 hours (limiting factor = GC runtime & phase separation time). The system can process one sample while an other sample is being analyzed ("overlapping").

Animal feed

AOAC 996.01 method

• Fatty acid composition from C14:0 to C24:1

Cleith Cleith Cleith Cleith Cleith	Compound	Measured Area (%)	Desired Area (%)
	C14:0	0.06	0.07
<u>5</u>	C16:0	4.30	4.29
	C16:1	0.22	0.27
	C18:0	1.94	1.97
C20:1	С18:1 с	63.66	63.86
	C18:2 ct	0.02	0.04
	C18:2 cc	18.26	18.42
	C18:3 t	0.16	0.15
C20:0	C18:3 ccc	8.15	8.25
	C20:0	0.56	0.56
C22:0	C20:1	1.03	1.02
	C22:0	0.28	0.27
C14:0	C24:0	0.12	0.13
1 Ala Mala Mala Mala Mala Star Anna Anna A	C24:1	0.13	0.13

Summary FAMEs

Productivity & process safety

- High productivity, 50 samples in 24 h, unattended
- Process safety
- Occupational safety
- Further standard methods can be implemented on the same system:

For example determination of free hexane in animal feed according to AOCS Ba 13-87 und AOCS Ca 3b-87

MCPD Solutions from Axel Semrau

CTC VAR Meeting 9/2017 Tobias Uber / Andreas Bruchmann

Mit uns stimmt die Chemie ...

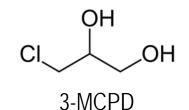
MCPD in the news

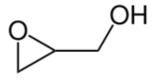
Decision of EFSA regarding MCPD/glycidol triggered heated discussions

 EFSA: The Panel selected a BMDL10 value for 3-MCPD of 0.077 mg/kg bw per day for induction of renal tubular hyperplasia in rats and derived a tolerable daily intake (TDI) of 0.8 µg/kg bw per day. The mean exposure to 3-MCPD was above the TDI for 'infants', 'toddlers' and 'other children'.

https://www.efsa.europa.eu/de/efsajournal/pub/4426

 Food manufacturers discuss pros/cons of using palm oil in the light of contamination by MCPDs, glycidol Süddeutsche Zeitung on 15th of Nov 2016 http://sz.de/1.3248703

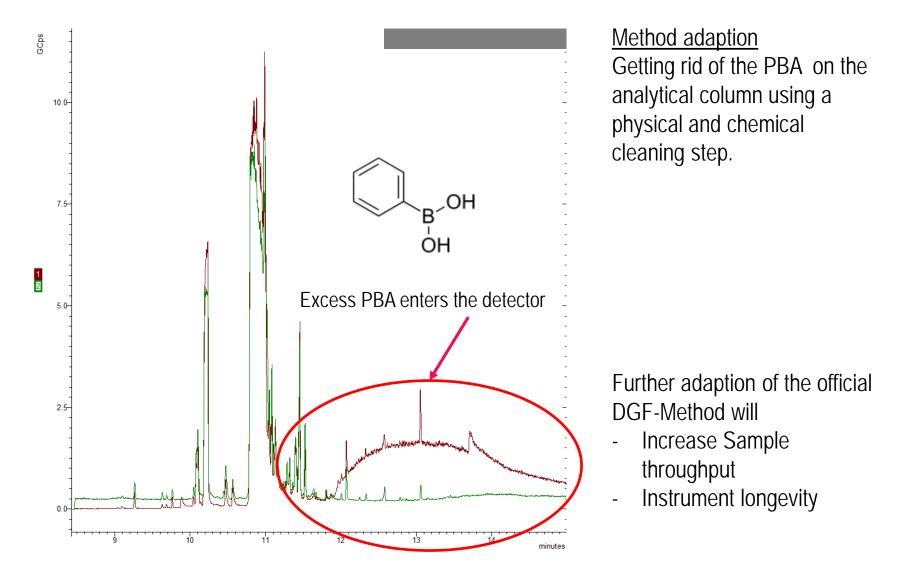

Süddeutsche Zeitung


SZ.de Zeitung Magazin

3-Monochloropropane-1,2-diol (3-MCPD)

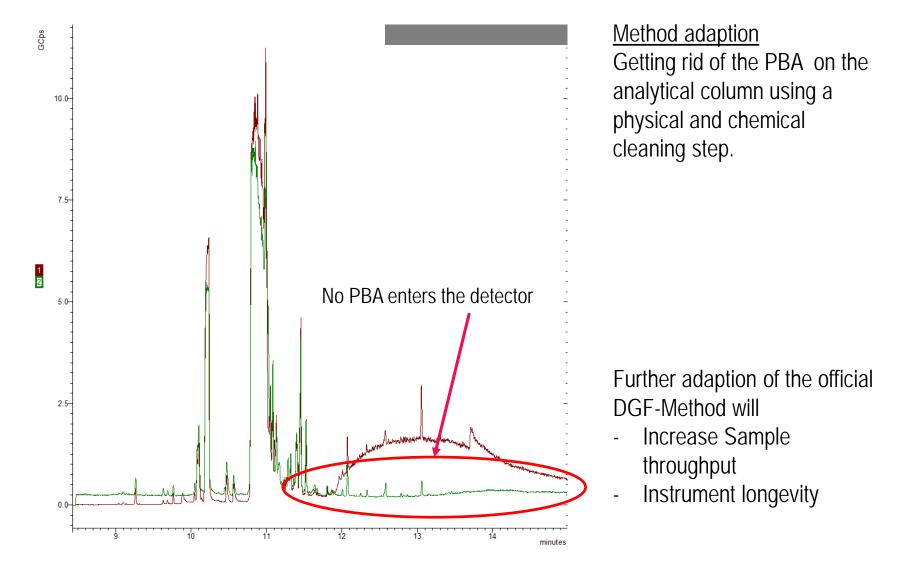
- 3-MCPD is a process contaminant generated when fatty or salted food is heated, e.g. soy sauce
- 3-MCPD is a suspected carcinogen, the TDI value is 2 µg/kg body weight (WHO 2002), reduced to 0.8 µg/kg by EFSA
- It is present in food mainly as ester. During digestion free 3-MCPD is formed in the human body
- Glycidyl esters are also of interest, since free glycidol is formed during digestion
- So far 2-MCPD has not been proven to be carcinogenic

Glycidol

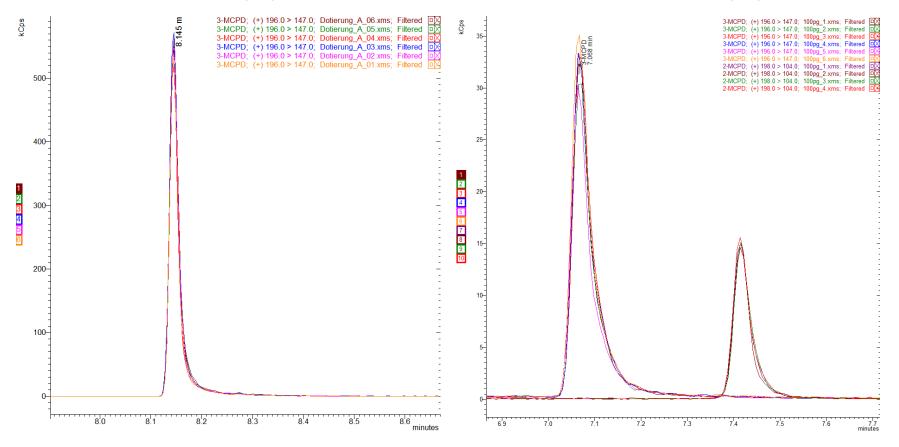


Trivial name	Components	Automation using PAL3 Official Method sampler Name		Comment		
DGF-Method	3 MCPD,GE (as difference), 2MCPD	100 % 160 cm DHR PAL RSI/RTC	AOCS Cd 29c-13 DGF C-VI 18 (10)	 Optional TQ for higher sample throughput ~ 36 samples/day 		
Kuhlmann "3in1" SGS "3in1"	3MCPD,GE, 2MCPD	90 % 160 cm DHR PAL RSI/RTC with manual step	AOCS Cd 29b-13	 Manual step involves placing the tray in the fridge @ -22 °C for 16 h. 		
Unilever-Method	3MCPD,GE , 2MCPD	100 % 160 cm DHR PAL RSI/RTC with CooledStack & Centrifuge	AOCS Cd 29a-13	 16 h @ 40 °C May require ultrasonic bath 20 samples per day 		
Zwagerman- Overman-Method	3 MCPD, GE, 2MCPD	100 % 160 cm DHR PAL RSI/RTC	-	 Requires ¹³C-Marked standard 70 samples per day 		

- Other methods require ASE for sample preparation
- Optimization of AOCS Cd 29c-13 in cooperation with the Institut Kirchhoff Berlin
- Clean technology for higher sample throughput and longevity


Analyzer longevity

Clean Technology physical and chemical


PAL is a registered trade mark of CTC Analytics AG, Switzerland

Very good reproducibility at different concentration levels

3-MCPD at 1 mg/kg

3-MCPD & 2-MCPD at 0.1 mg/kg

Linearity

Calibration: 0,05 - 0,5 mg/kg Calibration: 0,5 - 5 mg/kg **Correlation coefficient:** Correlation coefficient: 0,9996 0,9999 Variation coefficient: 1,74% Variation coefficient: 0,88% **Calibration: Calibration:** linear Linear y = -0.0003 + 0.2733xy = -0.0183 + 0.2967xEquation: Equation: 0.14 1.6 1.4 0.12 1.2 0.1 1 0.08 0.8 0.06 0.6 0.04 0.4 0.02 0.2 0 0 0 0.1 0.2 0.3 0.4 0.5 0 1 2 3 4 5

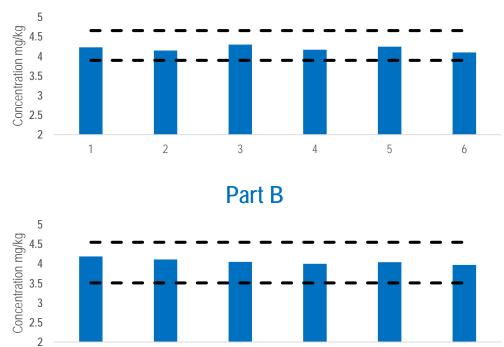
• Quantification can also be done using only the internal standard, as written in the official AOCS norm

Plugin for Calibration List

Easy to use plugin to create calibration curves

Analysis Method	
Add	
Remove	
Duplicate	
Move up	🔯 Calibration Calculator – 🗆 X
Nove down	Chronos Method
	DGF Fast and Clean 🗸 🛈
	-Standard Selection
New	Compound: 3MCPD-Esther (Palmitoyl) ~
Load	Concentration 1 Concentration 2 Concentration 3 0.001 ♀ mg/ml 0.01 ♀ mg/ml 0.1 ♀ mg/ml
Save	Standardposition Standardposition Standardposition
Save as	Tray Holder 1:Slot3 v 3 🗢 Tray Holder 1:Slot3 v 2 🗢 Tray Holder 1:Slot3 v 1 💬
Print	Remove Volume Vial Concentration in Vial
nport CSV	□ 26.5678 3 0.05 🗭 mg/Kg
Export	□ 39.8516 3 0.075 mmore mg/Kg
	□ 53.1355 3 0.1 🗭 mg/Kg
	□ 13.2839 2 0.25 🗭 mg/Kg
	□ 26.5678 2 0.5 👉 mg/Kg
apped y	□ 39.8516 2 0.75 🖨 mg/Kg
y e loop	□ 53.1355 2 1 🕏 mg/Kg
Create	□ 13.2839 1 2.5 🖗 mg/Kg
	□ 26.5678 1 5 🖗 mg/Kg
	□ 39.8516 1 7.5 mmore mg/Kg
	□ 53.1355 1 10 ♥ mg/Kg
	Send to Chronos

Plugin for Calibration List



Easy to use plugin to create calibration curves

	Analysis Method	d Source Tray	Source Vial	Salzart .	Calibration?	Standard Volumen [µl]	Calibrationtray	Calibrationvial	Einwaage [mg]	Filename
1	C:\Usen.cam	Tray Holder 1:Slot1	1	NaCl	\checkmark	26.568	Tray Holder 1:Slot1	3	100	101
2	C:\Usen.cam	Tray Holder 1:Slot1	1	NaCl	\checkmark	39.8516	Tray Holder 1:Slot1	3	100	101
3	C:\Usen.cam	Tray Holder 1:Slot1	1	NaCl	\checkmark	53.1355	Tray Holder 1:Slot1	3	100	101
4	C:\Usen.cam	Tray Holder 1:Slot1	1	NaCl	\checkmark	13.2839	Tray Holder 1:Slot1	2	100	101
5	C:\Usen.cam	Tray Holder 1:Slot1	1	NaCl	\checkmark	26.5678	Tray Holder 1:Slot1	2	100	101
6	C:\Usen.cam	Tray Holder 1:Slot1	1	NaCl	\checkmark	39.8516	Tray Holder 1:Slot1	2	100	101
7	C:\Usen.cam	Tray Holder 1:Slot1	1	NaCl	\checkmark	53.1355	Tray Holder 1:Slot1	2	100	101
8	C:\Usen.cam	Tray Holder 1:Slot1	1	NaCl	\checkmark	13.2839	Tray Holder 1:Slot1	1	100	101
9	C:\Usen.cam	Tray Holder 1:Slot1	1	NaCl	\checkmark	26.5678	Tray Holder 1:Slot1	1	100	101
10	C:\Usen.cam	Tray Holder 1:Slot1	1	NaCl	\checkmark	39.8516	Tray Holder 1:Slot1	1	100	101
11	C:\Usen.cam	Tray Holder 1:Slot1	1	NaCl	\checkmark	53.1355	Tray Holder 1:Slot1	1	100	101

Repeatability and Recovery of *DGF F&C* for 3-MCPD and 2-MCPD on consecutive days

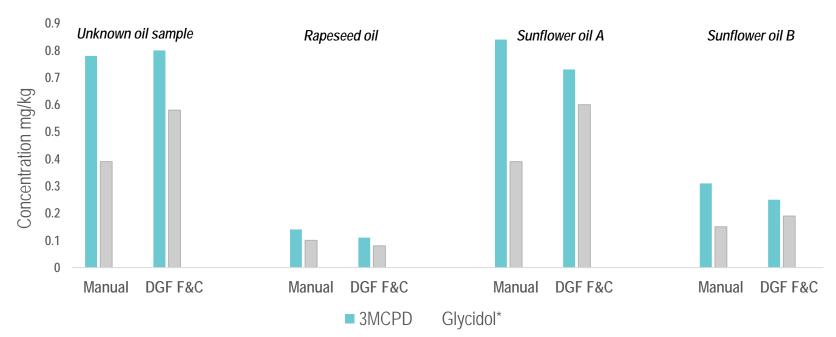
	Recovery %	Reproducibili ty %
3-MCPD part A	91.6	7.7
3-MCPD part B	101.9	8.8
2-MCPD part B	116.2	8.9

Results with DGF F&C

Real samples vs. round robin results

• FAPAS: Manually prepared samples from a round robin test

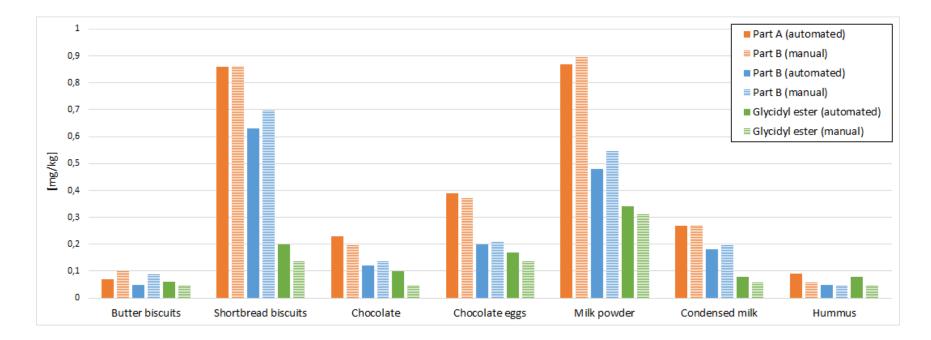
Processed according to AOCS Cd 29a-13, AOCS Cd 29b-13 or AOCS Cd 29c-13



Validation with FAPAS Reference Oil

*Using a transformation factor of 1.

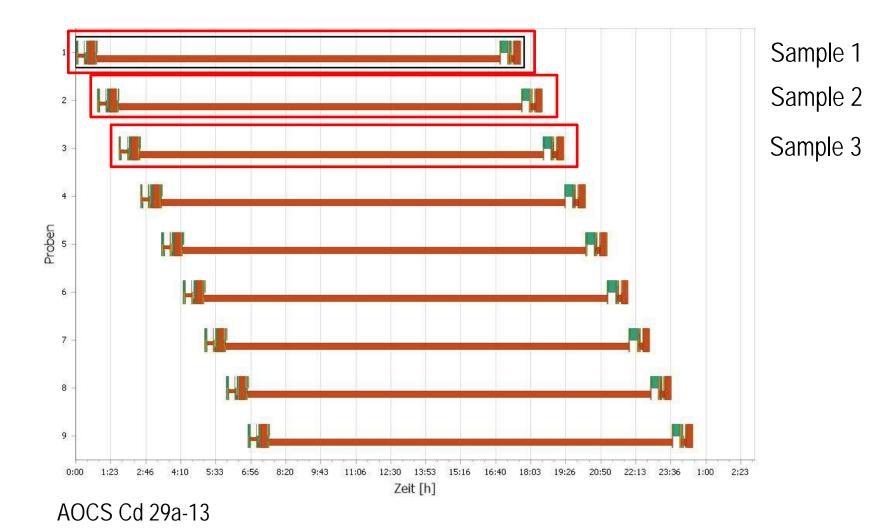
Comparison of manual sample handling according to AOCS Cd 29b-13 with the automated *DGF F&C*



Comparison of manual sample preparation vs *DGF fast* sample preparation

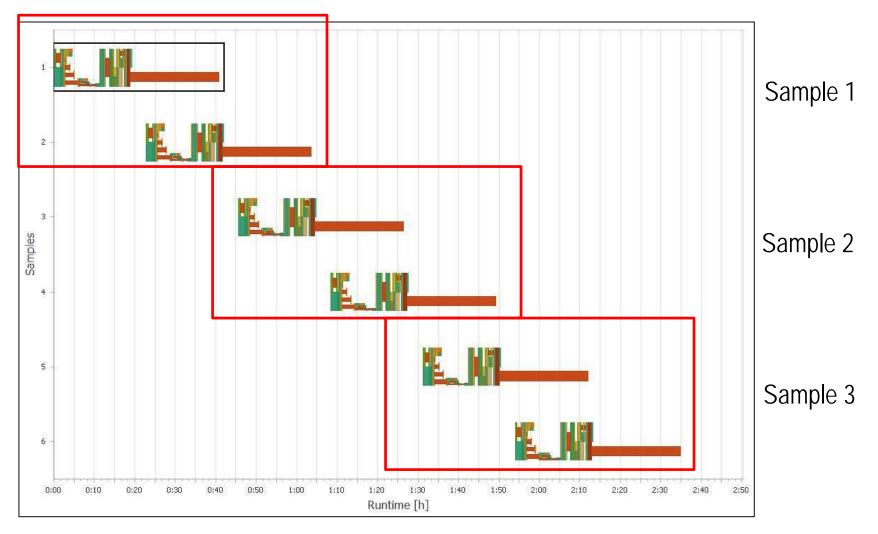
*Using a transformation factor of 1.

Comparison of manual sample handling according to AOCS Cd 29c-13 with the automated sample preparation *DGF fast* & *clean* in different matrices



Results of a mixture of sunflower oil and rapeseed oil with DGF F&C, DGF manual and SGS 3in1

	Fat miz	xture 1	Fat mixture 2		
	3-MCPD-Ester Glyc (mg/kg) (mg/		3-MCPD-Ester (mg/kg)	Glycidyl-Ester (mg/kg)	
"DGF F&C"	0.14	0.05	0.11	<0.05	
"DGF" manual	0.15	0.08	0.13	0.05	
"SGS 3- in 1- method" manual	0.14	<0.05	0.10	<0.05	


Efficient Overlapping with CHRONOS

Efficient Overlapping with CHRONOS

DGF F&C

CHRONECT solutions are available through:

Axel Semrau[®]

Axel Semrau GmbH & Co KG Stefansbecke 42 45549 Sprockhövel Germany

- http://www.axel-semrau.de/en
- info@axelsemrau.de
- uber@axelsemrau.de

